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Abstract

To improve text-based image retrieval system, we
propose to use visual content of images to filter their
textual indexing. We propose first to generate new
visual feature based on entropy measure (heterogene-
ity), and then we address the question of feature se-
lection in the context of mislabeled images. We com-
pare two methods of word dependant feature selec-
tion on mislabeled images: Approximation of Linear
Discriminant Analysis (ALDA) and Approximation
of Maximum Marginal Diversity (AMMD). A Hier-
archical Ascendant Classification (HAC) as trained
and tested using full or reduced visual space. Exper-
iments are conducted on 10K Corel images with 52
keywords, 40 visual features and 40 new ones. We
measure a classification gain of 59% and in the same
time a reduction of 93% of the number of features.
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1 Introduction

Query by example is a typical mode of request of im-
age retrieval systems. User provides a query-image
and the system searches for similar images based on
a combination of low level features. But this mul-
tidimensional nearest neighbors search (NN-search)
is not effective due to the high dimensional problem
[2, 4]. Another mode is based on a textual indexing
of image. This mode would be effective if the textual
indexing of image (or classification) could be made
automatically and correctly. In fact of the images
are harshly classified by search engines on the Web:
they are classified by words extracted from the same
Web page, without any analysis content-based [5].

On the other hand, Content-Based Image Retrieval
(CBIR) has attracted a lot of research interests in
recent years [3, 12, 21, 18]. But most of the tradi-
tional techniques in CBIR are limited by the seman-
tic gap between low level features (extracted from
the images) and high level user’s request. The in-
creasing amount of data and diversity of the types
of research contribute to widen this semantic gap.
Moreover visual space is usually very high, as the
number of keywords labeling objects in the image
(also called “visems”), and only few training data
with correctly full labeled visems are available as il-
lustrated in Fig. 1.

In this paper we propose to automatically reduce
the semantics gap by a pre-processing stage before
classification or image indexation of mislabeled im-
ages, without any user intervention. Our strategy
doesn’t rely on a pre-selection of most difficult im-
ages to classify, but on the fact that visual features
and keywords are strongly dependant. Therefore we
first (i) generate higher order visual features based
on entropy of all usual features (which generates a
contextual visual analysis of visem), and secondly
(ii) automatically optimize the visual space for each
visem by selecting the most discriminant visual fea-
tures. Thereby we produce a system which aims to
give some solution to the problem claimed in [3]: “it
remains an interesting open question to construct
feature sets that (...) offer good performance for a
particular vision task”. Our feature sets selection is
based on an extension of Linear Discriminant Anal-
ysis (LDA) to the particular case of mislabeled data.
We estimate the bias of this Approximation of LDA
(ALDA). ALDA is applied before a Hierarchical As-
cendant Clustering (HAC) to build visual clusters.
Experiments conducted on COREL database (10K

Figure 1: Example of automatic image segmentation
by Normalized Cuts algorithm on Corel image labeled
globally by “water”, “boat”, “harbor”, “building”}.
It’s difficult to know which blob may be labeled by a
word. Moreover, a bijection between blobs and words
is not possible.

images, around 50 different keywords and three key-
words by images) show that heterogeneity features
are rich cues for the perceptual interpretation of am-
biguous image and that great enhancement of clas-
sification results applying ALDA on combined usual
and heterogeneity features. We then present the re-
sults of a filtering keywords model based on the HAC
visual clusters, and we discuss in the final part of the
expected enhancement using our visem specific fea-
ture subspaces.

In section 2, the paper presents first a short re-
view of CBIR and feature selection systems. In sec-
tion 3, we describe usual feature and new heterogene-
ity feature. In section 4, we present the features se-
lection methods: LDA, approximated for mislabeled
data. In section 5, we describe the corpus and show
feature selection and HAC results for usual, hetero-
geneity and late fusion of feature space, and we apply
our methods to keyword filtering. Finally, we discuss
our results in the conclusion.

2 Features Selection and Semantic

Gap Reduction

Recent approaches to reduce the semantic gap is the
Active Learning (AL) asking the user to label some
images closest to the classifier boundary. Support
vector machine AL for image retrieval has been pro-
posed by [19]. This approach treats the relevance
feedback problem as a supervised learning problem.
A binary classifier is learned by using all relevant
and irrelevant labelled images as input training data.
SVM classification method used in AL has been com-
pared to Bayes and kNN classification methods in [10].
Authors claim that for category search in very large
databases, efficient exploration process before classi-
fication process will become crucial. Unfortunately
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active learning requires a lot of manual user feed-
back, many hundreds for about only 10 visems [10],
and therefore AL can’t be applied to a large image
data base with large visem lexicon.

On the other hand the most famous method of di-
mensionality reduction is Principal Components Anal-
ysis (PCA). This technique searches for directions
in the data that have largest variances and subse-
quently project the data onto it. But PCA does not
include label information of the data. For instance
let imagine two cigar like clusters in 2 dimensions. If
the cigars are positioned in parallel and very closely
together, such that the variance in the total data-
set, ignoring the labels, is in the direction of the
cigars, then PCA for classification would be a ter-
rible projection, because all labels get evenly mixed
and we destroy the useful information. Although
PCA finds components that are useful for represent-
ing data, there is no reason to assume that these com-
ponents must be useful for discriminating between
data in different classes.

Nevertheless, where PCA seeks directions that
are efficient for representation, Linear Discriminant
Analysis seeks directions that are efficient for discrim-
ination ([6] page 117). In this paper we adapt LDA
by approximation to real mislabeled general image
database.

3 Visual features

Image processing are usually based on color, texture
and shape features representing, rather roughly, ma-
jor visual properties. Moreover, images are often seg-
mented into regions (called ‘blobs’ that are in our pa-
per automatically extracted by Normalized Cuts [17];
see Fig. 1). In this section we present the usual fea-
ture set we use, and we propose to generate from it
a new one set motivated by psychovisual studies.

3.1 Major visual properties and usual fea-

tures

Visual feature set are often chosen to be computable
for any image region, and to be independent of any
recognition hypothesis. As in [3], we use for each
blob the 40 features listed below. Color is represented
using the average and standard deviation of (R,G,B),
(L,a,b), r=R/(R+G+B), g=G/(R+G+B). Texture is
represented using the average and variance of 16 filter
responses. We use 4 differences of Gaussian filters
with different sigmas, and 12 oriented filters, aligned

in 30 degree increments [17]. Shape is represented by
the ratio of the area to the perimeter squared, the
moment of inertia, and the ratio of the region area
to that of its convex hull. Size is the image portion
covered by the blob, and position is the coordinates
of blob center of mass normalized by the image size.
But as said in [3], it is not clear that these image
features are canonical.

3.2 Heterogeneity of features

According to the experiments carried out in psycho-
vision [14], heterogeneity criterion applied to surfaces
has more or less impact in visual descriptions of ob-
jects. The value of the heterogeneity of the visual
feature vj of the image d contenting the bp blobs is
the entropy of the distribution of its probalized values
bp,j:

Hj = −
∑

bp∈d

bp,j × log2(bp,j). (1)

In [13], heterogeneity is only defined on the area
feature. Based on neurobiological studies [1], we pro-
pose in this paper to extend heterogeneity concept
to all features. Recent advances in cognitive sciences
claim that human interpretation is based on a con-
textual visual analysis. As pointed out in [1]: “This
context-dependent transformation from image to per-
ception has profound but frequently under-appreciated
implications for neurophysiological studies of visual
processing”. Content-based image retrieval systems
should take into account this context-based neuronal
bases of visual scene perception. Red color can be
discriminant for ‘tomato’, but it is much more the
heterogeneities of color features that are discriminant
for ‘market’. Thus we extend the visual space apply-
ing heterogeneity to all normalized usual features.

4 Automatic word dependant fea-

ture selection on mislabeled data

Due to the high dimension problem [2, 4], a good
visual indexing would be made up with the visual
features which have the strongest discriminating ca-
pacities. To determine which are the most relevant
visual features to annotate an image with a word is
a difficult problem because available (mostly misla-
beled) data do not correspond with traditional statis-
tical methods requirements. Previous works showed
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Figure 2: Conditional likelihoods p(vj|wi) and p(vj |¬wi) of 5 visual features for WORD (W) versus NON-
WORD (NW) approximated classes for keyword “snow”. Features are sorted from the best discriminative
(N1) to the worst one (N40) (estimated by ALDA): N1 (‘B’ of RGB), N2 (‘B’ of LAB), N3 (‘std A’ of LAB),
N4 ( ‘std G’ of RGS) and N40 (‘3rd sigma texture’). We see clearly likelihood differences for discriminant
features between W versus NW classes, and overlapping for N40.

that simple methods like LDA1 (Linear Discriminant
Analysis) or Maximum Marginal Diversity (MMD)
[20] can discriminate acoustic [16] and visual fea-
tures [22], but these methods were applied on well
labeled corpuses describing a univocal relation be-
tween a conceptual class and a feature. The main
difficulty for applying this kind of methods on large
general images corpus is that they do not have a label
for each blob, but a words set for an image (Fig. 1).
We make however the following assumption: if an
image database presents each concept with a rather
broad contextual variety, then LDA or MMD meth-
ods can estimate the N best discriminant features of
each concept. Thus, for each word, we build a bipar-
tition of the training set: the class WORD of images
which are labeled by this word and the class NON-
WORD of images which are not labeled by it. Fig. 2
gives some features distributions obtained on WORD
and NONWORD classes for “snow”.

4.1 Approximation of Linear Discriminant

Analysis

Based on our two classes WORD and NONWORD,
we calculate for each word wi and for each visual
dimension vj , the between variance B̂(vj ;wi) (aver-
age variance of each class) and the within variance
Ŵ (vj ;wi) (weighted average of each class variance).

1Whereas PCA seeks direction that are efficient for repre-
sentation, LDA seeks ones that are efficient for discrimination
([6] p.117).

Finally, we calculate for each word wi and each fea-
ture vj the discriminant power F̂ (vj ;wi) defined by:

F̂ (vj ;wi) =
B̂(vj ;wi)

B̂(vj ;wi) + Ŵ (vj ;wi)
(2)

This method, called ALDA (Approximation of LDA),
has been theoretically and experimentally shown in [8]
that ranking errors due to this approximation are
small as long as enough samples are used and the
considered concept is presented in various concepts.

4.2 Approximation of Maximum Marginal

Diversity

However, LDA makes the assumptions that class den-
sities are gaussian, that are unrealistic for most prob-
lems involving real data. The best feature set char-
acterizing word class wi should contain those fea-
ture with large marginal diversities. The marginal
diversities M̂D(vj ;wi) of feature vj in class wi is
defined as the Kullback-Leibler divergence between
p(vj |wi) the class-wi conditional probability density
of vj and p(vj |¬wi) the probability densities of class
NONWORD:

M̂D(vj ;wi) =
∑

p(vj|wi)log
p(vj |wi)

p(vj |¬wi)
. (3)

4.3 Adaptive Features selection

To automatically determine the number of best fea-
tures to discriminate each word as well as possible,
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Figure 3: ROC curves of the HAC image classifica-
tion for word “woman” applied for various methods
to usual (U) and heterogeneity (H) features on DEV
set. Between two points of the curve, 5% of the clos-
est blobs are aggregated by HAC.

we propose to choose the N most discriminating ones
which cumulate τ per cent of the total sum of the dis-
criminating capacities over all the δ features for this
word (method ‘NADAPTτ ’). We sort discriminant
powers D̂P (= F̂ or M̂D) by descending order, then
the system choose N such that:

N∑

j=1

D̂P (vj ;wi) = τ

δ∑

j=1

D̂P (vj ;wi). (4)

5 Word dependant visual cluster-

ing

5.1 Clustering

In this first stage, we will associate a set of visual clus-
ters C(wi) = {C1(wi), C2(wi), · · · , CK(wi)} to each
word wi of the lexicon. We define a visual cluster
Ck(wi) as an hyperrectangle in the visual multidi-
mensional space. To build the visual clusters of a
word, we will seek out grouping of training blobs in
visual space using a Hierarchical Ascendant Classi-
fication (HAC) [11] (not-supervised construction of
clusters) with nearest neighbor aggregation criterion.
The principle of this HAC is to gather the blobs hav-
ing a weak distance in multidimensional space.

For each word wi, we build a subset A(wi) made
with images d of the training set A labelled by the

word wi:

A(wi) = {d|wi ∈ WRef (d) and d ∈ A}. (5)

Figure 4(a) shows an example of training images la-
belled by the same word. On A(wi), we carry out an
HAC. Then we determine the level of the HAC by
choosing the one giving best score on a development
set (score calculation is explained section 5.3). We
then keep only clusters which contain a significant
number of blobs. Thus we associate visual clusters
to word wi.

Each class Ck(wi) is represented by a couple of
same dimension vectors:

(C̄k(wi), ~σ(Ck(wi))) (6)

where c̄k(wi) is the centroid vector of the visual clus-
ter in multidimensional space and ~σ(ck(wi)) is the
vector of the standard deviations of the class for each
dimension of space.

Let us notice that visual clusters of a word are
disjointed, because no blob can belong to two clusters
of the same word:

∀k 6= k′ Ck(wi) ∩ Ck′(wi) = ∅ (7)

what can be interpreted like a word can have sev-
eral visual sens. For example, the sun can be yellow,
but it is also often red at sunset. Let us also notice
that two different words can have visual clusters not
disjointed:

∃ k, k′ and wi, w
′

i Ck(wi) ∩ Ck′(w′

i) 6= ∅. (8)

Indeed, two words can have very close visual. For
example, words: “human”, “man”, “woman”, “child”
can have very close visual because of the presence of
texture representing the skin (see also figures 4(a)
and 4(b) for concrete example).

5.2 Quality evaluation of word dependant

visual clusters

We have just described a method allowing to asso-
ciate visual clusters to words, we will now evaluate
the quality of this association in order to determine
for each word the best value for stopping the HAC.
For that, we use a test set. For each word, we classify
initially the blobs images of test, then the images of
test, in visual space. Lastly, we calculate the score.

By definition, a blob bj of a test image belongs
to a visual cluster Ck(wi) if the visual vector of bj is
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(a) Example of training images use to build the visual clus-
ters of word “horse”.
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(b) The three visual clusters of word “horse” obtained by
40DIM method, represented in RGB space. Clusters are
actually hyperrectangles.

Figure 4: Training examples and visual clusters for
“horse”.

in the hyperrectangle cluster Ck(wi), in other words
if for each visual dimension p, the value of the visual
vector of the blob bj for dimension p is at a distance of
the value of the centroid of cluster Ck(wi) for dimen-
sion p lower than the value of the standard deviation
for this dimension multiplied by a constant:

bj ∈ Ck(wi) iif ∀p | ¯Ck,p(wi)−~Vp(bj)| ≤ α× ~σp(Ck(wi))
(9)

where α is an optimized constant. If we supposed
that the distribution of blobs in a visual cluster built
in training stage, follows a normal law then for α = 2
we let us know that 95% of the individuals are in the
cluster ([6] page 33). In our case, we do not have
a normal law distribution, however we will suppose
that 0 < α ≤ 4, and we optimize α on development
set (see ROC curves in figure 3).

For each blob bj of test, we associate the word wi

to bj if bj belongs to one of the visual clusters of this
word:

wi ∈ WSys(bj) iif ∃k such as bj ∈ Ck(wi) (10)

where WSys(bj) is words set associated by the system
to blob bj . As the visual clusters of a word are dis-
jointed, a blob belongs to no more than one cluster.
Thus if there exists k such as bj ∈ Ck(wi) then it is
the only one. Thus |{k|bj ∈ Ck(wi)}| = 1 if the word
wi is associated to bj , 0 if not. So |{k|bj ∈ Ck(wi)}| =
1 if word wi is associated to bj , 0 else. Finally, we
assume that word wi is associated to a test image d
if this word is associated to at least β blobs of this
image:

wi ∈ WSys(d) iff
∑

bj∈d

|{k|bj ∈ Ck(wi)}| ≥ β (11)

where WSys(d) is the word set associated by the sys-
tem to image d and β is a constant lower or equal
to the minimal number of blobs of an image. This
constant is dependent on the number of blobs in an
image. Indeed, more there are blobs in an image and
more the constant β will be large, because a word
may correspond to several blobs of the image. How-
ever, we set β = 3 for usual features experiments and
= 1 for heterogeneity ones.

5.3 Scoring

Each test image is initially labelled by a words sets
WRef (d). Thus we can calculate the rates of sensitiv-
ity and specificity. We also use the score “Normal-
ized Score” (noted NS thereafter) employed in [3, 15].
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Sensitivity (also called recall) is the number of rele-
vant documents found among the number of relevant
documents. We use it to measure the number of test
images associated with wi by the system and initially
labelled by wi. Specificity is the number of not rele-
vant not found documents among the number of not
relevant documents. The score NS is the sum of the
sensitivity and specificity less 1:

NS = sensitivity+specificity−1 =
right

n
−wrong

N − n
(12)

where right is the number of found images labeled
with wi, wrong is the number of found images not
labeled by wi, N is the total number of test images
and n is the number of test images labelled with wi.
Let us notice that −1 ≤ NS ≤ 1. Score is 1 when
the system finds the n words of references and none
of the other words, -1 when it only finds the words
which are not references, 0 when all the words of the
lexicon are found. The gain measures given in our
experiments is for method M:

gain(M) = (NS(M)−NS(40DIMU)/(NS(40DIMU).
(13)

6 Experimental results

6.1 Corpus

We use the same data as in [3]. Experiments are made
on Corel images database made of various 10K im-
ages, approximately 100 000 segments (called ‘blobs’)
are preprocessed in [3] by ‘Normalized Cuts’ algo-
rithm [17]. This segmenter has the occasional ten-
dency to produce small, typically unstable regions.
We keep the 10 largest regions in each image by com-
puting, for each region, a set of 40 features described
in section 3.1. Then we calculate the heterogeneity
for each visual feature. In order to avoid artifact,
we normalize both usual (U) and heterogeneity (H)
vectors in 90% of their MLE Gamma distribution.
Finally, each blob is represented by a vector of 80 di-
mensions where each component is in [0, 1]. Features
pdf in eq. 3 are estimated by

√
256 bins histograms on

TRAIN set. Each image of Corel is manually labeled
by an average of 3.6 words from a lexicon of 250 dif-
ferent words. We choose to study in this article only
the 52 keywords having more than 60 occurrences in
our training set. The corpus is split by chance in a
training set (TRAIN) of 5000 images, a development
set (DEV) of 2500 images and a test set (TEST) of
2500 images.
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(a) Comparison of the normalized scores (NS) obtained on TEST set
for 40DIMU (NADAPT1.00 U ALDA) and NADAPT0.30 U ALDA
methods. Some words are more discriminated by heterogeneity (H)
features than by usual (U) ones.
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(b) Comparison of the normalized scores (NS) obtained on
TEST set for NADAPT0.30 ALDA U and NADAPT1.00
ALDA H methods. Some words are more discriminated by
heterogeneity (H) features than by usual (U) ones.

Figure 5: Comparison of normalized scores.
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both naturally converge to the reference model U on
usual feature without feature selection (τ=1.00).

6.2 Word clustering by HAC

To model the association between visual features for
a given word, we build visual clusters by Hierarchical
Ascendant Classification (HAC) as explained in sec-
tion 5. For each word, we cluster by HAC the visual
vectors – reduced to the N best dimensions chosen
by ALDA or AMMD – of TRAIN images labeled by
this word. Each visual cluster is represented by mean
and standard deviation vectors. Finally, the system
indexes an image by a word if at least three blobs
(β = 3 for U) (resp. one blob β = 1 for H) of the
image are in one of the visual clusters of this word.
Each DEV and TEST image is initially labeled by
a words set, thus we calculate the Normalized Score
(NS). We optimize parameters (clusters sizes, α) on
DEV set maximizing NS (see Fig. 3).

6.3 Selection and fusion results on TEST

The feature selection results for 2500 TEST images
and 52 keywords are shown in Fig. 6 and Tab. 1.
ALDA feature selection (methods NADAPT and NBEST)
reduces space dimension and increases score classifi-
cation with U features. In Fig. 5(a), we compare, for
each word, the normalized scores of 40DIMU (clas-
sification on U without feature selection) and the
best NADAPT method (NADAPT0.30 U): most of
the words are better discriminated with feature se-
lection. In average (Fig. 6), classification on hetero-
geneity features give worse results than usual ones. In

addition, feature selection on H (NADAPT H) give
worse results than 40DIMH (classification on H with-
out feature selection), it might be due to the lack of
samples with H (only one vector by image). However,
as shown in Fig. 5(b), some words are better discrim-
inated with H than with U, so H could be useful to
improve image classification of some concepts. Thus
we propose, for Late Fusion, to learn for each word
on DEV set, which one of U or H spaces maximizes
NS. The Late Fusion curve in Fig. 6 show a signifi-
cant improvement. We propose then to learn on DEV
set for each word which τ gives best results (methods
called Bestτ in Tab. 1). Results on TEST set show
an improvement of +69% compared to 40DIMU.

7 Keyword Filtering

On the Web, images are associated to keywords among
which some are relevant for the image and others not.
In [5], they study the importance of title web page,
HTML tags, surrounding text passages to retrieve
efficiently images, but they couldn’t check the visual
relevance of words to images. We wish to filter words
according to their visual relevance to the image. Un-
fortunately, we do not have image databases allowing
to validate this filtering. Moreover, one would need
validation of filtering by users. We thus propose an-
other method: we suppose that reference words of an
image are the relevant words for this image and others
words of lexicon are the not relevant ones. We then
use the visual clusters obtained previously by HAC
of training blobs and optimised with DEV set, for
filtering all the words of the lexicon for TEST image
(see Fig. 8). This method could be used for image
annotation [7], but our system is build for filtering
existing keywords, and not for predicting keywords.

For each image of TEST, we calculate the NS
score (described part 5.3) by taking right as the num-
ber of reference words associated to the image by the
system, and wrong the number of words which were
not reference words and were associated nevertheless
to the image by the system. We make then the av-
erage of NS scores obtained for all images of TEST
(see FILTERING Tab. 1).

The magnitude orders of results for classification
and for filtering are almost the same ones except for
NADAPTBestτ H where the results of filtering are
better. It might be due to the lack of samples with
H, and so each words is better discriminated for a dif-
ferent value of τ . This results are encouraging to use
H features. Finally, we measure a filtering improve-
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Figure 7: Schema of the keyword filtering system

Figure 8: Example of keyword filtering of an image with the visual clusters build by NADAPT0.30 U ALDA
method
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ment up to 39% compare to filtering without feature
selection.

8 Discussion and conclusion

Large image retrieval systems require, on the one
hand, to be able to index images with few visual fea-
tures and the most relevant words and, on the other
hand, to quickly search a concept with some specific
visual characteristics. We demonstrate in this article
that ALDA and AMMD methods can determine for
each word which are the most relevant visual features,
and thus attenuate significantly the number of visual
features necessary to nearest neighbor searches, and
consequently reduce the high dimensional problem.
Moreover, heterogeneity features (H) which is a fast
indexing can discriminate some concepts better than
usual ones (U). The late fusion of U and H allows a
reduction of the visual space to the 3 most discrimi-
nating features, while improving scoring up to +59%.
All parameters are learned only once, so the indexing
and research of new images on the visual spaces ob-
tained by fusion is very fast. We wish thereafter to
work on Web images to build an image search engine
dealing with texts and images, however Web images
are badly annotated. Anyway we have just shown
that ALDA and AMMD methods deal with misla-
beled data [9]. These methods will thus permit us
to learn which are the most relevant features to as-
sociate keywords to Web images, then to effectively
filter these keywords according to the visual contents
of the images.
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